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Abstract. We investigate theoretically the possibility of finding a charge-density-wave (CDW)
instability in a zero-temperature double-electron-quantum-wire structure. Intrawire and interwire
correlations are treated on the same footing within the self-consistent-field approximation of Singwi
and co-workers. To check for the CDW instability, the static density susceptibility is calculated
over a wide range of wire parameters (electron number density, wire size, and wire spacing). We
find that the double-quantum-wire structure may become unstable against a long-wavelength CDW
instability for sufficiently low electron density and narrow wire size, in the close proximity of two
wires.

1. Introduction

The recent advances in nanoscale semiconductor fabrication technology have led to increasing
interest in the theoretical [1–3] and experimental [4–6] study of single- and multiple-electron-
quantum-wire structures. In a quantum wire system, the particles can move freely only along
one spatial direction (say the x-axis), while their motion is restricted quantum mechanically
in the remaining two transverse directions. These quantum wire systems, apart from having
a large technological potential, exhibit many interesting and new phenomena in transport [6]
and Raman [4,5] spectroscopic measurements, and, theoretically, these are understood to arise
primarily from the quantum confinement of the dynamics of carriers.

In a multiple-quantum-wire system (a system of coupled parallel quantum wires), the
situation has been found to become even more interesting due to the presence of interwire
electron interaction effects. In particular, these interactions increase substantially the strength
of many-body correlations in the close proximity of two wires. Gold [7], and Wang and Ruden
[3] found theoretically for the double-quantum-wire system that the interwire interactions can
cause the electrons in each wire to become unstable against a charge-density-wave (CDW)
ground state below a critical wire spacing at sufficiently low electron densities. Gold predicted
the instability in the long-wavelength limit, while Wang and Ruden showed in addition to the
long-wavelength instability the presence of CDW instability at q = 2qF , where qF is the one-
dimensional (1D) Fermi wave vector. Wang and Ruden treated the intrawire correlations within
the self-consistent-field approximation of Singwi, Tosi, Land, and Sjölander (STLS) [8], while
Gold used the Hubbard approximation. The effect of interwire correlations was neglected in
both of the calculations. Moreover, it was assumed that the intrawire correlations are not
affected by the presence of the second wire. Recently, Mutluay and Tanatar [2] included the
effect of interwire correlations on the basis of a fully self-consistent STLS approximation to
calculate the ground-state energy and collective density excitation spectrum. But, these authors
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confined their study to a limited range of wire parameters (electron number density, wire size,
and wire spacing) and the question of CDW instability was not addressed. In this paper, we aim
to explore the possibility of the existence of CDW instability in the double-electron-quantum-
wire structure on taking into account both the intrawire and interwire correlations. We will
proceed by calculating the density response function of the system, and the CDW instability, if
it exists, will appear as a singularity in the static density response function. The intrawire and
interwire correlations will be treated on the same footing within the completely self-consistent
STLS approximation as used in reference [2]. A brief account of the theoretical formalism is
given in section 2. The CDW instability is discussed in section 3.

2. Theoretical formalism

We consider two parallel electron quantum wires in the x-direction, with wire diameter b and
with infinite potential barriers at |r| = b/2. The wires are assumed to be separated by a
centre-to-centre distance d � b. With these assumptions, the wave functions of the particles
in the two wires do not overlap, and, therefore, the tunnelling of particles between wires is
not possible in the present model. The carrier densities n are assumed to be equal in the two
wires. At absolute zero temperature and sufficiently low densities, electrons occupy the lowest
energy subband in the direction lateral to the wire axis (say the y-axis direction). Ignoring the
effect of averaging over the finite extent of the electron wave function in the lateral direction,
the intrawire and interwire Coulomb interaction potentials V11(q) and V12(q) are obtained as

V11(q) = 2e2

ε0
K0(|qb|) (1)

and

V12(q) = 2e2

ε0
K0(q

√
b2 + d2). (2)

K0(x) is the zeroth-order modified Bessel’s function and ε0 is the dielectric constant of the
background wire material. Such a quantum wire model has recently been used by Thakur and
Neilson [9] to study coupled electron–hole quantum wires.

Within the linear response framework, the density response function for the double-wire
system can be expressed in the form of a 2 × 2 matrix given as

[χij (q, ω)]
−1 =

[
χ−1

1 (q, ω) −V12(q)(1 −G12(q))

−V21(q)(1 −G21(q)) χ−1
2 (q, ω)

]
(3)

where χi(q, ω) (i = 1, 2) is the density response function for the single wire. In the STLS
approximation, χi(q, ω) is given by

χi(q, ω) = χ0
i (q, ω)

1 − Vii(q)[1 −Gii(q)]χ0
i (q, ω)

i = 1, 2 (4)

where χ0
i (q, ω) is the zero-temperature density response function of the non-interacting

electron gas. As n1 = n2, we have χ0
1 (q, ω) = χ0

2 (q, ω). In equations (3) and (4), Gij (q)
(i, j = 1, 2) are the static local-field correction factors that account for the short-range
Coulomb correlation effects. Within the STLS approach, the local fields are related to the
static structure factors Sij (q) through the expression

Gij (q) = −1

n

∫ ∞

−∞

dk

2π

kVij (k)

qVij (q)
[Sij (q − k)− δij ]. (5)
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The fluctuation-dissipation theorem relates Sij (q) to χij (q, ω) as follows:

Sij (q) = − h̄

πn

∫ ∞

0
dω χij (q, iω). (6)

In view of the geometry of the system, we have Aij (q) = Aji(q), i = j = 1, 2, where A may
be S or G. From equations (3)–(6), it is apparent that Gij (q) is to be obtained numerically in
a self-consistent way.

3. Charge-density-wave instability

A CDW state defines a charge-density-modulated state at some length scale, say qc, in each
wire and, if present, this will appear in the static (ω = 0) density susceptibility as a divergence
at q = qc. Diagonalizing the static density response matrix, the diagonal components of the
susceptibility, defined by χ(q) = −χ(q, 0), are obtained as

χ±(q) = (2/e2)A(q)

πq + 4A(q)[K0(qb)(1 −G11(q))±K0(q
√
b2 + d2)(1 −G12(q))]

(7)

where

A(q) = ln(|(q + π/2rs)/(q − π/2rs)|).
rs = 1/(2na∗

0) is the dimensionless electron density parameter. a∗
0 = ε0/(m

∗
ee

2) is the
effective Bohr atomic radius, where m∗

e is the electron effective mass. For a GaAs/GaAlAs-
based quantum wire system, a∗

0 = 9.8 nm. In equation (7) and also thereafter, h̄ = 1, q
is in units of (a∗

0)
−1, and b and d are in units of a∗

0 . The plus (minus) sign in equation (7)
corresponds to the case where the density fluctuations in two wires have a phase difference of
zero (π ). qc for the CDW ground state, if it exists, can be obtained by setting the denominator
of equation (7) equal to zero, i.e.,

πqc + 4A(qc)[K0(qcb)(1 −G11(qc))±K0(qc
√
b2 + d2)(1 −G12(qc))] = 0. (8)

Equation (8) cannot be solved analytically for qc as the local fieldsG11(q) andG12(q) can only
be obtained numerically in a self-consistent way. However, it is quite evident at first glance
that it is the out-of-phase component of susceptibility which can diverge, and the possibility
for divergence will depend on the behaviour of both the intrawire and interwire local fields
and wire parameters rs , d , and b. For instance, setting both G11(q) and G12(q) equal to zero,
equation (8) has no solution for positive qc. Therefore, we first investigate the behaviour of
local fields G11(q) and G12(q).

Equations (3)–(6) are solved numerically in a self-consistent way forGij (q). We accepted
the solution when the convergence inGij (q)was achieved to an accuracy of better than 0.001%.
For very thin and closely spaced wires, it becomes difficult to obtain the convergent solution.
In these situations, we employ a numerical procedure which makes use of the local fields given
by

Gij (q) = 1

2

[
Gm−1
ij (q) +Gm−2

ij (q)

2
+Gmij (q)

]
(9)

in themth iteration for the calculation of Sij (q). The same method is employed for calculating
Gij (q) from Sij (q). Figures 1(a), 1(b), and 1(c) contain, respectively, the rs-, d-, and b-
dependences of the local fields G11(q) (solid lines) and G12(q) (dashed lines). Our results
for the rs-dependences of the local fields are in qualitative agreement with those obtained in
reference [2] where the authors had used the cylindrical-quantum-wire model. But, we have
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Figure 1. The intrawire and interwire local-field factors G11(q) (solid lines) and G12(q) (dashed
lines). (a) For rs = 1, 3, 5; b = 0.5 and d = 2. The labels denote the parameter rs . Curves for
bothG11(q) andG12(q) from bottom to top correspond to rs = 1, 3, and 5. (b) For d = 2, 1, 0.87;
rs = 3 and b = 0.5. The labels denote the parameter d. Curves for G11(q) from top to bottom
correspond to d = 2, 1, and 0.87, while forG12(q) the sequence of curves is exactly the reverse of
that forG11(q). (c) For: b = 0.5, 0.25, 0.1; rs = 1; and d = 0.5. The labels denote the parameter
b. Curves for G11(q) from top to bottom correspond to b = 0.1, 0.25, and 0.5, while for G12(q)

the sequence of curves is exactly the reverse of that for G11(q).

reported here in addition the dependence of the local fields on d and b. It may be noted from
figure 1 that in addition to rs , the local fields depend equally on d and b. Interestingly, as
the wires are brought closer (keeping rs and b fixed), G11(q) becomes weaker, while G12(q)

grows in a monotonic way. On the other hand, with the decreasing wire size (keeping rs and
d fixed), G11(q) increases in strength and G12(q) becomes somewhat weaker. Thus, it is not
justified to neglect either G12(q) or the d-dependence of G11(q).

Coming back to the solution of equation (8), we tackle the problem in a numerical way
and plot in figure 2 the out-of-phase component of the susceptibility χ−(q) for: rs = 1, 3, 5;
b = 0.5; and different d-values. In the present quantum wire model, the spacing d can at most
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Figure 2. The out-of-phase component of the static density susceptibility at b = 0.5 and different
rs - and d-values. (a) For rs = 1 and d = 1, 0.75, 0.5. (b) For rs = 3 and d = 1, 0.92, 0.8689.
(c) For rs = 5 and d = 2.15, 2, 1.955. The labels denote the parameter d. Curves from bottom to
top are in the order of decreasing d.

be decreased to the wire diameter. For d < b, one cannot speak of two separate wires. We
notice in figure 2(a) that χ−(q) does not show any singular behaviour at rs = 1 and b = 0.5
for the d-values allowed in our model. Also, at rs = 2 and b = 0.5, there is no singularity
found in χ−(q) (not plotted in figure 2), but the height of the peak centred at q = 2qF increases
considerably, and, in addition, another peak in χ−(q) starts developing at small q. However,
with further increase in rs , the peak at small q becomes quite dominant in strength over the
peak at q = 2qF . This can be noticed from figures 2(b) and 2(c), in which results for χ−(q)
are plotted, respectively, at rs = 3 and 5, for b = 0.5 and different d-values. It is also apparent
that the small-q peak grows further in magnitude with the decreasing of the wire spacing
d. However, we are not able here to calculate χ−(q) below a critical spacing dc because it
becomes almost impossible to obtain accurate self-consistent local fields Gij (q) for d < dc.
dc is found to depend upon both rs and b. For example, at rs = 3 and b = 0.5, we have
dc ≈ 0.8689, and at rs = 5 and b = 0.5, we have dc ≈ 1.955. χ−(q) shows a similar kind
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of dependence on d if we ignore the interwire correlations (G12(q) = 0), but dc turns out to
take a relatively large value. Examining carefully the different steps involved in the numerical
solution of equations (3)–(6), we notice that numerical instabilities (singularities) do appear
for d � dc− while calculating Sij (q) from χij (q, ω) (equation (6)) (dc − dc− is of the order of
10−5). The same thing can also be checked by calculating χ−(q) (equation (7) for d � dc− ,
but by using the local fields at dc as the required inputs.

We may recall here that in reference [3] a clear singularity in χ−(q) was reported at
both small q and q = 2qF at low electron density depending upon the wire separation. But
those authors neglected completely the interwire correlation effects (G12(q) = 0) and the
d-dependence of the intrawire correlations, i.e.G11(q) was treated as independent of d. Thus,
there the problem of obtaining the d-dependent self-consistent local fields did not appear. In the
present study, however, we have included both the intrawire and interwire correlations within
the completely self-consistent STLS approximation. But, as seen above, the self-consistency
requirement of the STLS approach restricts us to calculating the self-consistent density response
function beyond a critical wire spacing dc. We note from equations (6) and (7) that it seems
difficult in practice to handle the singular behaviour of the integrand for d � dc− , and also in
an iterative way. In view of the above discussion, the development of a strong peak in χ−(q)
followed by the appearance of numerical instabilities in the calculation of the self-consistent
density response function may be interpreted as a precursor for the long-wavelength CDW
instability in the double-quantum-wire system. This result constitutes an important finding
of our paper. It also supports the prediction of a CDW in the double-quantum-wire system
made by Wu and Ruden [10] on the basis of a total-electron-energy calculation. However, this
result seems to be contrary to what we had expected in our recent work [11], where it was
found that the CDW instability disappears in the system of two charged Bose quantum wires
on inclusion of interwire correlations, and a similar result was also anticipated for the electron
system. In [11], cylindrical geometry was assumed for the quantum wire, although we had
not reported any instability, but it was almost impossible to obtain the STLS self-consistent
density response function for d � 2.2R0 (R0 being the wire radius) at low densities (rs � 8).
We reinvestigate the problem over a rather wider range of wire parameters than in [11] and now
find that the system of two charged Bose quantum wires may also become unstable against
the long-wavelength CDW instability beyond a critical set of wire parameters. Further, it may
be added here that Liu et al [12] also encountered a similar kind of numerical instability in
obtaining the STLS density response function for the coupled electron–hole layers and this
was recognized as a precursor for the onset of the CDW ground state. Similar instability
has recently been found by us in coupled charged Bose layers [13]. Thus, there remains
a finite probability of transition into the CDW ground state even on inclusion of interwire
correlations.

We have also examined the effect of wire size b on the existence of a CDW state. At
rs = 1, no evidence or precursor for the instability is seen on decreasing b even down to 0.1.
However, at rs = 2, where the instability was completely absent at b = 0.5, we now find a
clear precursor for the long-wavelength CDW instability for b = 0.25 when d < 0.39. One
can draw a boundary in the rs–b–d space separating the liquid and the possible CDW phases
of the system at the cost of a great deal of computation time.

Thus, we may arrive at the conclusion that the double-electron-quantum-wire structure
may become unstable against transition into the CDW ground state beyond a critical set of
wire parameters even on the inclusion of interwire correlations. However, the critical wire
spacing for the onset of CDW transition is reduced from its value when interwire correlations
are simply ignored. In fact, the interwire correlations act to stabilize the wire system against
transition into the CDW state (this is also clear from equation (8)), but their effect is not so
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strong as to eliminate completely the possibility of existence of a CDW state. Moreover, the
transition to the CDW ground state is controlled by the competition between the intrawire and
interwire correlations.

Finally, we make some remarks on the key assumptions made in the present work and
on the comparison of our results with the experiments. Rather than using the Luttinger liquid
description of the 1D electron system [14], we have assumed Fermi liquid behaviour of the
electrons. Our assumption of Fermi liquid behaviour seems to be justified in view of the
fact that the small degree of inherent disorder present in the system can restore the Fermi
liquid behaviour of the 1D electrons [15], and the many-body correlations remain essentially
unaffected [2] (both qualitatively and quantitatively) by the small degree of disorder (disorder
parameter γ � 0.1EF , EF being the Fermi energy). Therefore, we believe that our results
on the CDW ground state still hold provided that the degree of disorder is small. Secondly,
the dynamic confinement of electrons in the lateral direction has been assumed to result due
to infinitely high potential barriers at the lateral ends of the wire. However, the confinement
potential is finite in the laboratory-made quantum wire structures. Relaxing our assumption
of an infinite potential barrier, the tunnelling of electrons between the two wires may not
be negligible in the close proximity of two wires. The extent to which the consideration
of tunnelling can alter the CDW ground state remains, to the best of our knowledge, to be
investigated. Finally, the experimentally studied quantum wires correspond to a density rs ≈ 1
and wire diameterb ≈ 10 nm. In these situations, our study shows only weak correlation effects
and, consequently, no CDW instability. However, with the recent advances in nanoscale
technology, we hope that narrower quantum wires with lower density will be fabricated in
the laboratory and that, therefore, there will be an opportunity to detect experimentally the
possibility of the CDW state.
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